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Genetically identical microbial cells respond to stress heteroge-
neously, and this phenotypic heterogeneity contributes to popula-
tion survival. Quantitative analysis of phenotypic heterogeneity can
reveal dynamic features of stochastic mechanisms that generate
heterogeneity. Additionally, it can enable a priori prediction of
population dynamics, elucidating microbial survival strategies.
Here, we quantitatively analyzed the persistence of an Escherichia
coli population. When a population is confronted with antibiotics,
a majority of cells is killed but a subpopulation called persisters
survives the treatment. Previous studies have found that persisters
survive antibiotic treatment by maintaining a long period of lag
phase. When we quantified the lag time distribution of E. coli cells
in a large dynamic range, we found that normal cells rejuvenated
with a lag time distribution that is well captured by an exponential
decay [exp(−kt)], agreeing with previous studies. This exponential
decay indicates that their rejuvenation is governed by a single rate
constant kinetics (i.e., k is constant). Interestingly, the lag time
distribution of persisters exhibited a long tail captured by a
power-law decay. Using a simple quantitative argument, we dem-
onstrated that this power-law decay can be explained by a wide
variation of the rate constant k. Additionally, by developing a
mathematical model based on this biphasic lag time distribution,
we quantitatively explained the complex population dynamics of
persistence without any ad hoc parameters. The quantitative fea-
tures of persistence demonstrated in our work shed insights into
molecular mechanisms of persistence and advance our knowledge
of how a microbial population evades antibiotic treatment.
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Many stochastic systems, although they may consist of com-
pletely different microscopic components, can exhibit

quantitatively similar fluctuations, which suggests the universality
in stochastic processes. For example, a wide variety of seemingly
unrelated stochastic processes, e.g., radioactive decay, the number
of car accidents at a given site, etc., can be captured by the Poisson
dynamics, thus sharing similar features, e.g., exponential time
distribution of the events (1, 2). Importantly, demonstrating such
quantitative features can provide an understanding of dynamic
mechanisms that generate system-level fluctuations, enabling a
priori prediction of fluctuations. Furthermore, demonstrating such
quantitative features can reveal connections between seemingly
unrelated phenomena that share similar features.
A microbial cell is a stochastic system because biochemical

reactions inside of it are inherently stochastic (3–9). Due to this
inherent stochasticity, genetically identical cells can exhibit a
great deal of phenotypic heterogeneity (10–14). From a clinical
perspective, the most important example of phenotypic hetero-
geneity is a phenomenon known as persistence (15–17). As first
reported by Joseph Bigger (18), when a clonal bacterial pop-
ulation is exposed to a bactericidal drug, a majority of cells die
quickly while a minority called persisters survive for long periods
of time, resulting in complex population survival dynamics.
To better understand these population dynamics, extensive

studies have focused on molecular mechanisms of persistence.

While a large number of genes that can alter the levels of per-
sistence have been identified, there is a substantial controversy
regarding how these genes are activated and how they contribute
to persistence (19–24). As such, with the current knowledge of
molecular mechanisms alone, we cannot predict the population
dynamics of persistence, e.g., what percentage of cells in a pop-
ulation is persisters and how their percentage changes over time.
Various theoretical modeling efforts have been made to un-

derstand the population dynamics of persistence (25–29). These
models typically contain coupled differential equations with pa-
rameters describing the dynamics of antibiotic killing and switch-
ing between normal and persister cells. To explain the complexity
of population dynamics of persistence, some models introduced
additional processes, e.g., 2 different types of persisters or dependence
of switching on substrate/antibiotic concentrations, etc. The parame-
ter values associated with these processes were often determined by
fitting the models to population dynamics data. However, the
number of free parameters in some of these models raises concerns
about overfitting. More importantly, the quantitative signature
governing persistence has rarely been discussed in these studies.
Single-cell resolution imaging was proven to be a valuable tool

for studying persistence. It was shown that when cells in sta-
tionary phase (hence nondividing) were suspended in a fresh
growth-permissive medium, a majority of cells rejuvenate and
resume growth immediately, but a small subpopulation maintains
the nondividing state (i.e., lag phase) for an extended period of
time (25, 30–32). Because a nondividing state confers cells tol-
erance to antibiotics, this subpopulation can survive antibiotic
treatment, contributing to persistence. Collectively, these studies
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established that long lag phase plays a critical role in persistence.
However, a quantitative study of long lag phase is challenging,
due to very low levels of cells with long lag phase. For example,
although some studies directly observed these cells using single-
cell microscopy, due to low sample size, it was difficult to
quantitatively analyze their lag time (25, 32, 33). Although other
methods were used to deduce the long lag time of persisters, e.g.,
by measuring microcolony appearance dynamics (ScanLag) (33)
or fluorescence dilution (34), these are indirect measurements.
In this work, we directly monitored a large number of wild-type

Escherichia coli cells using single-cell microscopy and quantitatively
characterized a large dynamic range of their lag time distribution,
demonstrating its intricate quantitative feature. Additionally, we
show that this quantitative feature alone can account for the pop-
ulation dynamics of persistence without ad hoc parameters. We
then discuss the population structure that gives rise to the observed
quantitative feature, the possible connections between this quanti-
tative feature and the current molecular understanding of persis-
tence, and the clinical implication of this quantitative feature.

Results and Discussion
Multiphase Population Dynamics of Isogenic Bacteria Exposed to an
Antibiotic. We first characterized the population dynamics of per-
sistence by measuring a time-dependent killing curve of a pop-
ulation exposed to an antibiotic. The stationary phase was shown
to play an important role in persister generation; for example,
maintaining a culture in the exponential phase for an extended
period of time eliminates persisters (16). Thus, to enrich persisters
in a culture, most studies kept cells in stationary phase before
suspending them in fresh medium containing an antibiotic (25, 30,
31, 34, 35). In our experiments, we kept cells in stationary phase for
3 d and suspended them in fresh LB medium containing ampicillin
(100 μg/mL); the moment of suspension defines time 0. To measure
a time-dependent killing curve, we performed a colony-forming unit
(CFU) assay at different times by spreading a small volume of the
culture onto an LB agar plate containing no ampicillin. We then
incubated the plates overnight, enumerated CFUs, and determined
NCFU (the number of CFUs at time t normalized by the number of
CFUs at time 0). Agreeing with previous studies, a complex mul-
tiphase killing curve was observed (Fig. 1) (25, 36–38). Importantly,
the long tail of the curve indicates persistence.

Single-Cell–Level Observation of Lag Time. Previous studies have
shown that a long lag phase of a minority of cells contributes to
persistence (25, 30, 31). Thus, we used single-cell time-lapse
microscopy to determine the periods of lag phase (lag time) of
individual cells. We prepared a culture as described above and
determined how long it takes for cells from a stationary-phase
culture to rejuvenate and resume growth in fresh LB medium.
Fig. 2A shows a rejuvenation probability distribution, which is
also called a lag time distribution in the field (these 2 terms are
used interchangeably in this article). The rejuvenation proba-
bility decreased rapidly in the first 100 min, and this decrease was
well approximated by an exponential decay (linear line in green
shaded region in Fig. 2A). This exponential decay agrees with
previous observations in other studies (SI Appendix, Fig. S1).
What distinguishes our dataset from others is its large dynamic

range. The aforementioned studies of lag time distribution char-
acterized 2 or 3 orders of magnitude of decrease in the distribu-
tion, thus focusing mostly on rejuvenation of normal cells.
Although recent studies directly observed a minority of cells with
a long lag phase (i.e., persisters) with single-cell microscopy, due
to low sample size, it was difficult to precisely quantify or analyze
their rejuvenation probability (25, 32, 33). In this work, by
tracking a large number of cells (∼12,800 cells in 3 independent
experiments), we quantified a large dynamic range of the re-
juvenation probability. We observed that after the initial expo-
nential decay of rejuvenation probability (by nearly 3 orders of

magnitude), the decrease slows down dramatically, deviating
from the exponential decay (to the right of the green shaded re-
gion in Fig. 2A). Interestingly, when we replotted the data in the
second regime in a log-log scale, we observed a linear decrease
(Fig. 2A, Inset), suggesting a power-law decay. In many statistical
studies, it is common to use logarithmic data binning to show a
power-law decay of a distribution (39). When we binned our data
logarithmically, we again observed the same linear trend (Fig. 2B);
note that the values of all our raw data as well as processed data
(logarithmically binned) are provided in SI Appendix. The power-
law exponent was found to be approximately −2 (Fig. 2B, line).
Power-law distribution is a widespread feature in many stochastic
processes, observed in physics, ecology, earth sciences, and social
sciences (e.g., self-organized criticality, earthquake, word usage,
etc.) (39). Typically, these empirical distributions exhibit a power-
law decay only in the tail; it is rare that distributions follow a
power-law decay for all their values. This is the case for the re-
juvenation probability observed in our study as well.
Collectively, our single-cell–level data above indicate that the

rejuvenation probability f (τ) is biphasic and well captured by the
following:

f ðτÞ=
�
A1 · expð− k · τÞ for  τ<τ0

A2 · τβ for  τ≥ τ0
, [1]

where k, τ0, and β are the rate constant in the initial exponential
decay, the time at which the probability distribution transitions
to a power-law decay, and the power-law exponent, respectively.
A1 and A2 are normalization constants that are related to the
proportion of normal and persister cells. The values of these
parameters were determined from the experimental data as de-
scribed in SI Appendix, Supplementary Method and provided in
Fig. 2 and SI Appendix, Table S1.

Time Delay of Ampicillin Killing. Having quantitatively character-
ized the temporal distribution of rejuvenation probability, we
sought to use this distribution to better understand the complex
time-dependent killing curve (Fig. 1). Importantly, persisters are
different from antibiotic-resistant cells in that once persisters
rejuvenate and resume growth, they are killed by antibiotics.
Therefore, to understand the time-dependent killing curve, we
must know how quickly growing cells are killed by ampicillin.
Propidium iodide (PI) staining was previously shown to be an
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Fig. 1. Time-dependent killing curve of a population exposed to ampicillin.
Stationary-phase cells were suspended in fresh LB medium containing 100 μg/mL
ampicillin (time 0). A colony-forming unit (CFU) assay was performed at different
times. NCFU represents normalized CFU, i.e., the number of CFUs at time t divided
by the number of CFUs at time 0. Agreeing with previous studies (25, 36, 37), a
complex multiphase killing curve was observed. The long tail of the curve indi-
cates persistence. We performed additional experiments to confirm that this tail
is not due to mutation (see SI Appendix, Fig. S3 for details). For each time point t,
at least 2 biological replicates were performed, and their mean (data points) and
SD (error bars) were shown. Within each biological replicate, at least 4 technical
replicates were performed, and their average was used for the plot.
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excellent indicator of dead E. coli cells (40–44). We additionally
confirmed that PI is a good indicator for cell death by ampicillin;
when we incubated cells with ampicillin and PI for 80 min and
spread them on an LB agar plate containing no ampicillin, none
of the PI stained (PI+) cells grew (see SI Appendix, Supple-
mentary Method for detail). One issue of PI is the loss of nucleic
acids upon lysis by ampicillin. PI stains nucleic acids, but lysis
results in the loss of cytoplasmic contents, including nucleic acids
(40–44). Hence, lysed cells are, although they are clearly dead,
not stained by PI. On the other hand, we can distinguish these
lysed cells by their refractivity; when observed via phase-contrast
microscopy, a live E. coli cell is normally refractile (i.e., it exhibits
a dark area with sharp boundaries), whereas lysed cells exhibit
poor phase contrast with diffuse boundaries (44). Therefore, we
tracked both PI staining and lysis to evaluate ampicillin killing.
We found that on average it takes 102 min for ampicillin to kill
growing cells (SI Appendix, Fig. S2). We denote this time delay of
killing by Δ (=102 min). A similar time delay of ampicillin killing
was observed in previous studies (45).

Mathematical Framework Bridging Lag Time Distribution and Time-
Dependent Killing Curve. To quantitatively understand the pop-
ulation dynamics of persistence, one could model switching be-
tween normal and persister cells using ordinary differential
equations. More realistic models can be constructed by includ-
ing the dependence of switching rates on various factors such as
substrate concentration (e.g., see ref. 28). One potential problem
of this approach, however, is overfitting; although a model may
fit a curve, fitting itself may not justify the underlying assumption
of the model. Here, we take an alternative approach. We believe
that our single-cell studies above have identified the central ki-
netics underlying persistence (i.e., the biphasic decay of re-
juvenation probability distribution). If these kinetics govern

persistence as we believe, they must be able to account for the
time-dependent killing curve without any ad hoc parameters.
To do so, we must clarify the relationship between rejuvena-

tion probability and a time-dependent killing curve. As discussed
above, a time-dependent killing curve is measured by performing
CFU assays at different times, that is, a small volume of a sample
was taken from a culture growing in LB with ampicillin and
spread on an LB plate (without ampicillin) at time t. Thus, the
CFU data report the number of viable cells at the time t. Given
the time delay of ampicillin killing Δ (as shown above), the cells
that had rejuvenated and resumed growth at any time before t − Δ
would be killed, failing to form colonies. Mathematically put, the
fraction of dead cells at time t is then equal to

R t−Δ
0 f ðτÞdτ, where

f ðτÞ is the rejuvenation probability. Conversely, the fraction of
viable cells capable of forming colonies on an LB plate when
assayed at time t, g(t), is given by the following:

gðtÞ= 1−
Zt−Δ

0

f ðτÞdτ. [2]

Because we already know the function of rejuvenation probabil-
ity f ðτÞ (Eq. 1), we can calculate g(t). The result was plotted as a
black curve in Fig. 3. In the same figure, we replotted the em-
pirical time-dependent killing curve (from Fig. 1) as black points,
which shows a good agreement. Importantly, our mathematical
model highlights 3 different phases. First, for t less than Δ (=102
min), there would not be enough time for ampicillin to kill cells.
Thus, g(t) is 1 (green region in Fig. 3). A majority of cells re-
juvenate and resume growth within the first 93 min (Fig. 2), but
these cells are killed by ampicillin after a time delay Δ, leading to
a rapid decay of NCFU between Δ (=102 min) and Δ (=102) + 93
min (red region in Fig. 3). The rejuvenation probability exhibits a
long tail after 93 min (Fig. 2B), leading to a long stretch of NCFU
after Δ (=102) + 93 min (blue region in Fig. 3). Thus, the re-
juvenation probability can account for the complex time-
dependent killing curve without ad hoc parameters.
Here, all of the parameter values in this model were determined

empirically from single-cell–level experiments (Fig. 2) and thus
would be affected by experimental error. Next, by allowing the
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Fig. 3. Comparing the model prediction of a time-dependent killing curve with
experimental data. We mathematically related the rejuvenation probability
distribution (f) and the fraction of viable cells (g) in Eq. 2. Using the rejuvenation
distribution f (which was fully specified in Eq. 1 and Fig. 2), we calculated the
fraction of viable cells g and plotted the result as a black curve. The empirical
time-dependent killing curve (from Fig. 1) was replotted as black points, which
show a good agreement. Importantly, our mathematical model highlights 3
different phases as marked by different shades. See text for details. Here, the
parameter values used to compute g were previously obtained using the data
plotted in Fig. 2. We then varied these parameter values to find the best fit. The
best-fit curve (gray dashed curve) looked similar to the original prediction based
on empirically determined parameters (black solid curve). Also, the best-fit pa-
rameter values are similar to those determined empirically (SI Appendix, Table S1).
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Fig. 2. Rejuvenation probability distribution (or lag time distribution). (A)
Using time-lapse microscopy, we determined the time points at which cells from
stationary phase rejuvenate and resume growth upon suspension to fresh LB
medium (∼12,800 cells were analyzed in 3 independent experiments). The re-
juvenation probability initially decreased rapidly over time (green region), and
this initial decrease was well approximated by an exponential decay (linear
line). After a rapid decrease of nearly 3 orders of magnitude, the decrease slows
down dramatically, deviating from the exponential decay (to the right of the
green shaded region). In the Inset, we replotted this late regime in a log-log
scale. A linear decrease in a log-log scale suggests a power-law decay. Three
different symbols represent the data obtained from 3 independent experi-
ments. (B) In statistical studies, it is common to use logarithmic data binning to
visualize a power-law decay of a distribution (39). The data shown in the Inset
(Fig. 2A) were replotted after logarithmic binning. The power-law exponent is
approximately −2 (the red line has a slope of −2). Note that the values of all our
raw data as well as processed data (logarithmically binned) are provided in SI
Appendix. Additionally, we performed more experiments to confirm that the
initial cell density has little effect on our observation (see SI Appendix, Fig. S4
for details). The biphasic decay plotted here was mathematically formulated as
f (τ) in Eq. 1. The parameter values in Eq. 1 were determined using the ex-
perimental data as described in SI Appendix, Supplementary Method (τ0 = 93
min, k = 0.063 min−1, and β = −2.1, A1 = 0.0622 min−1, and A2 = 2.42 min1.1).
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parameter values to vary, we searched for the best fit of the model
to the killing curve. The best-fit curve (gray dashed curve in Fig. 3)
agreed with the experimental killing data (black points) marginally
better than the original prediction (black solid curve), although
they are very similar. The parameter values from the fitting are
found to be similar to those used originally (determined empiri-
cally from single-cell–level data) (SI Appendix, Table S1).

Quantitative Mechanisms for Exponential or Power-Law Decays in
Rejuvenation Probability. An exponential decay distribution is com-
mon in natural phenomena [e.g., radioactive decay (2)]. An expo-
nential decay indicates first-order kinetics with a single rate constant.
To demonstrate this point, we consider nongrowing cells rejuvenating
and resuming growth at a constant rate of k. Then, the number of
nongrowing cells at a given time N(τ) is governed by the following:

dNðτÞ
dτ

=−kNðτÞ. [3]

The solution of Eq. 3 is as follows:

NðτÞ∝ expð−k · τÞ. [4]

The rejuvenation probability we measured in our experiments refers
to the number of cells resuming their growth during a given time
interval Δτ, NðτÞ, which is given mathematically by the following:

NðτÞ=− 
ΔNðτÞ
Δτ

∝ k · expð−k · τÞ. [5]

Eq. 5 indicates that a homogeneous population that resumes
growth with a single rejuvenation constant k exhibits an expo-
nential decay in rejuvenation probability distribution.
How can we understand the power-law decay in the later part of

the distribution (Fig. 2B)? The mathematical derivation shown
above (Eqs. 3–5) clearly indicates that a homogeneous population
with a single rejuvenation constant cannot exhibit a power-law
decay. To quantitatively understand a power-law decay, we then
consider a heterogeneous population. For the sake of simplicity,
we first consider a population consisting of 2 subpopulations with
2 different rejuvenation constants k1 and k2. In this case, using
Eq. 5, we can write that the number of cells resuming their growth at
a specific time τ, NðτÞ, is given by the following:

NðτÞ∝ k1 · expð−k1 · τÞ+ k2 · expð−k2 · τÞ. [6]

Extending this formula, for a large number of such subpopula-
tions, we have the following:

NðτÞ∝
Xn
i=1

ki · expð−ki · τÞ, [7]

or

NðτÞ∝
Z ∞

0
k · expð−τ · kÞ · dk. [8]

Since
R∞
0 k · expð−τ · kÞ · dk = −ðd=dτÞ R∞

0 expð−τ · kÞ · dk andR∞
0 expð−τ · kÞ · dk = 1=τ, Eq. 8 becomes the following:

�NðτÞ∝ 1
τ2
. [9]

Thus, for a heterogeneous population in which cells rejuve-
nate with various rate constants, the rejuvenation probability is
expected to exhibit a power-law decay with exponent of −2, as we
observed in our experiments (Fig. 2B). Please note that we fur-
ther extended this argument in SI Appendix. Above, the integral

over k has an infinite upper-hand limit (Eq. 8), which implies
that the population size is infinite. By considering an integral
with finite limits, we showed that the finite population size sets
the temporal bound for which the power-law holds (SI Appendix,
Supplementary Note 1). In addition, above we assumed a uniform
distribution of k to provide an intuitive explanation of the power-
law decay with the exponent of −2. By introducing a weighting
function of k, we showed that this assumption is not critical to
explaining the observed power-law decay (SI Appendix, Supple-
mentary Note 2).

Power-Law Decay Can Provide a Quantitative Framework for
Understanding Complex Molecular Processes Underlying Persistence.
How can we relate this power-law nature of rejuvenation prob-
ability distribution to the current molecular understanding of
persistence? Molecular mechanisms of persistence have been
extensively characterized (16, 46, 47). Previous studies of per-
sisters have shown that toxin and antitoxin systems cause per-
sistence (25, 48–51), but increasing evidence supports that there
are many other genes that lead to persistence, such as phoU,
tolC, oxyR, etc. (52–55). Additionally, various errors in the cell
replication cycle or metabolism as well as cells’ stress response to
such errors lead to the nondividing state of persisters (56–62).
Collectively, these studies indicate that a myriad of different
molecular processes can contribute to generation and rejuvena-
tion of persisters. For example, some cells could enter a non-
dividing state because of toxin overproduction and rejuvenate
when toxins get degraded (by antitoxins). Some cells could enter
a nondividing state due to glitches in DNA replication and reju-
venate when the glitches are repaired. As such, a persister sub-
population is a diverse collection of various cells whose growth
was transiently halted by different mechanisms (63). Since dif-
ferent persister cells can enter and exit a lag phase through
different mechanisms, rejuvenation kinetics of persisters are
expected to be highly heterogeneous, meaning a wide variation of
rejuvenation constants within a persister subpopulation. As our
derivation above (Eqs. 6–9) shows, such a wide variation of reju-
venation constants would lead to a power-law decay in rejuvena-
tion probability. Therefore, our findings of a power-law decay in
rejuvenation probability distribution agree with previous findings
that a myriad of mechanisms generate persisters. However, we
emphasize that this connection between the molecular mecha-
nisms and power-law decay distribution is speculative, and more
studies are needed to establish this connection.

Further Implication of a Power-Law Decay. In statistics and proba-
bility, a long tail in a probability distribution indicates a large
number of occurrences far from the central part of the distri-
bution. A power-law distribution is a classic example of a long-
tailed distribution. This is why a power-law decay in rejuvenation
probability distribution leads to a long stretch in the time-dependent
killing curve (Fig. 3). In fact, we quantitatively explained this stretch
with the power-law distribution without invoking any ad hoc
parameters (Fig. 3).
From a clinical point of view, this long tail distribution is

problematic because it indicates that some persister cells reju-
venate and resume growth after maintaining a very long period
of lag phase. Unfortunately, many conventional antibiotics have
little efficacy for these cells during lag phase, killing them only
once they rejuvenate. Therefore, for infections containing per-
sister cells, an extended antibiotic treatment is required for
eradication. This is why for infections by agents with a high
number of persisters, e.g., Mycobacterium tuberculosis, antibiotic
treatment lasts more than 6 mo (still then, the chance of eradi-
cation is not 100%). Therefore, our observation of a power-law
decay in rejuvenation probability further highlights the need to
develop new interventions to rejuvenate persister cells [as was
previously demonstrated (64)] or new antibiotics that can directly
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https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903836116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1903836116


target persister cells (65). Importantly, persistence is a general
phenomenon as it has been observed not only for bacteria but
also for fungi and mammalian cells (66–68). It would be in-
teresting to investigate the generality of our findings.

Methods
Strain and Cell Culture. We used an E. coli K12 NCM3722 ΔmotA strain (69).
For batch cultures, cells were cultured at 37 °C with shaking at 250 rpm in a
water bath (New Brunswick Scientific). To monitor growth in batch cultures,
the optical density (OD600) of the culture was measured using a Genesys20
spectrophotometer (Thermo Fisher) with a standard cuvette (16.100-Q-10/
Z8.5; Starna Cells). Our typical experimental procedure was as follows. Cells
were taken from −80 °C stocks and first cultured in an LB medium for 4 to 6 h
(seed culture). Then, they were transferred to N−C− minimal medium (pH = 7)
(70) supplemented with 40 mM ammonium chloride and 40 mM glucose
(glucose minimal medium) at very low densities (typically lower than OD600

of ∼0.0001) and cultured overnight (preculture). The low densities were used
to ensure that the cells were growing exponentially the next morning. These
cells were then diluted (20–50 times) and subcultured in prewarmed fresh
glucose minimal medium (experimental culture). The cells grew exponentially

for at least 4 more doublings before they were spun down and resuspended in
the same type of minimal medium without glucose (i.e., starvation medium).
On the third day of the starvation, a small volume of the culture was trans-
ferred to fresh prewarmed LB medium containing ampicillin (BioBasic) for the
CFU assays or microscope experiments. See SI Appendix, Supplementary
Method for the details of the CFU assays.

Microscopy. All our single-cell–level observations were made using an
inverted microscope (Olympus IX83). The microscope had an automated
mechanical XY stage and autofocus, which were controlled by MetaMorph
software (Molecular Devices). The microscope is housed in an incubator
(InVivo Scientific), which ensured maintenance of a desired temperature in
the experiments (37 °C). Images were captured using a Neo 5.5 sCMOS
camera (Andor). Image analysis was performed using MicrobeJ, a freely
available plug-in for the ImageJ software (71). See SI Appendix, Supple-
mentary Method for the details of the microscope experiments.
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