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Lineage-dependent variations in single-cell
antibiotic susceptibility reveal the selective
inheritance of phenotypic resistance in
bacteria

Wesley Stine1,5, Tatsuya Akiyama1,2,5, David Weiss 2,3,4 & Minsu Kim 1,2,4

Genetically identical bacterial cells often exhibit heterogeneous responses to
antibiotics − some survive, others die. Here, we show that this heterogeneity
propagates across generations to give rise to phenotypic resistance. Using
real-time single-cell tracking, we exposed Escherichia coli to the β-lactam cef-
sulodin at its clinical breakpoint concentration and analyzed cell fate within
genealogical trees statistically. Cell survival was strongly correlated among
family members, driving the selective enrichment of robust lineages within an
otherwise susceptible population. Our genealogical population model identi-
fied heritable phenotypic resistance as a key factor underlying this enrich-
ment, which was validated experimentally. Comparing enrichment dynamics
between the wild-type and a tolC knock-out strain, deficient in multidrug
efflux, uncovered nuanced changes that increased the intergenerational
memory of phenotypic resistance. Our findings provide evidence for heritable
phenotypic resistance and demonstrate how its propagation through cell-to-
cell heterogeneity enables the survival of minority cells within isogenic
populations.

Antibiotics are pivotal in combating bacterial infections, but lose their
efficacy when administered inappropriately or misused. This problem
is further exacerbated by antibiotic-resistant bacteria, which continue
to replicate in the presence of antibiotics.

Traditionally, antibiotic resistance was attributed to genetic
changes, suchasmutations andhorizontal gene transfer1. Thismodeof
resistance, typically referred to as genotypic resistance, can be reliably
detected by conventional antibiotic susceptibility tests2. Due to its
stability, it can be isolated by subsequent plating, and genetic markers
responsible for resistance can be readily monitored by sequencing.
Epigenetic adaptation, potentially mediated by mechanisms akin to
DNA methylation observed in mammalian cells, could also contribute
to resistance3,4. However, recent studies have shown that bacteria can

survive and grow in the presence of antibiotics without undergoing
genetic changes, a phenomenon collectively known as phenotypic
resistance5–11. Surveys suggest that phenotypic resistance is wide-
spread, contributing significantly to antibiotic treatment failure12–15.
Unlike genotypic resistance, however, phenotypic resistance is not
easily detected by conventional susceptibility tests and evades diag-
nosis by sequencing16. No well-defined physiological markers have
been identified to explain its emergence. Phenotypic resistance is
distinct from bacterial persistence, where dormant variants tolerate
antibiotic treatment by transiently halting growth17. Unlike these tol-
erant cells, phenotypically resistant cells continue to grow and multi-
ply in the presence of antibiotics, having significant effects on
pharmacodynamics.
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Recent advances in our understanding of phenotypic hetero-
geneity offer valuable insights into this enigma. Over the past decade,
it has become clear that genetically identical cells can exhibit distinct
phenotypes18,19, because molecular processes in the cell are inherently
stochastic20–22. Notably, gene expression turned out to be ‘noisy’,
which leads to rapid variations in gene product levels within cells,
which some studies view as a bet-hedging strategy18,23. Due to these
variations, the phenotype of genetically identical cells can differ from
cell to cell.

Similar observations have been made in antibiotic treatments of
isogenic populations. Despite uniform antibiotic exposure, some cells
succumbed and were killed while others replicated12,14,15,17,24, which not
only complicates antibiotic treatments but also alters the evolution of
resistance25. This phenomenon was observed across a wide spectrum
of antibiotics regardless of their mode of action26, indicating it is a
general principle of bacterial response to antibiotics. With the recog-
nition that stochastic gene expression drives cell-to-cell heterogeneity,
recent studies used stochastic branching processes to model cell
growth and death under antibiotic exposure as random events, pre-
dicting random variations in population size during antibiotic
treatments26–28.

Yet, this perspective dismisses the heterogeneity as mere noise in
a population, overlooking potential regulatory mechanisms that may
actively modulate the heterogeneity to enhance population fitness
under antibiotic stress. If these mechanisms persist near the clinical
breakpoint, i.e., the threshold concentration defining the limit of
antibiotic susceptibility29 (Supplementary Text 1), they can contribute
to antibiotic resistance, having significant impacts on antibiotic diag-
nosis tests and treatment strategies13,16. Importantly, because these
processes do not involve genetic changes, they will be manifested as
phenotypic resistance.

In this study, we focused on this heterogeneity to establish phe-
notypic resistance and understand its propagation dynamics within a
population. Specifically, we exposed an isogenic population of E. coli
cells to aβ-lactamantibiotic, cefsulodin (which inhibits the synthesis of
bacterial cell wall30) at its breakpoint concentration. We tracked cell
growth and death at single-cell resolution in real time, while simulta-
neously tracing their family relationship and documenting their
growth/death patterns in the genealogical trees. Given the well-known
role of efflux pumps in antibiotic resistance31, we inactivated them by
knocking out a major component of efflux pumps, tolC. We then
analyzed the cell survival patterns probabilistically using statistical
methods and developed a population model to quantitatively under-
stand the observed statistical properties. The results collectively pro-
vide evidence for phenotypic resistance, while demonstrating its
intricate inheritance dynamics through cell-to-cell heterogeneity.

Results
Single-cell-level analysis of cell growth and death
Traditional diagnosis of antibiotic resistance provides an incomplete
picture about antibiotic susceptibility. For example, the breakpoint of
a β-lactam antibiotic, cefsulodin, is 32μg/ml32,33. A wild-type E. coli
culture grows to the saturating density at this breakpoint, thereby
being categorized as resistant29 (Fig. 1a; see Supplementary Fig. 1 for
growth curve). However, single-cell-level imaging shows that a sub-
stantial number of cells are susceptible and are killed at this con-
centration (Supplementary Movie 1, left panel). Death of these cells,
which occurs concurrently with the growth of others, causes the
number of live cells in a population to fluctuate seemingly randomly
(Fig. 1b). Such population fluctuations have been observed for various
other bactericidal drugs as well26.

In previous studies, these fluctuations were modeled using a
stochastic branching process26–28, which assumes that each cell’s fate is
uncorrelated. To test this assumption, we analyzed the fluctuations in
greater depth. Specifically, in addition to counting live cells, we

followed the family relationship of these cells, thereby constructing a
genealogical tree for each colony. This tree visualizes which cells grew
and which died (Supplementary Movie 1, right panel), displaying the
variations in antibiotic susceptibility among individual cells. An
experiment encompassing ~30 colonies yielded ~30genealogical trees,
collectively comprising ~4000 cells on average, per experiment. The
experiment was independently repeated thrice.

To statistically assess the variations in antibiotic susceptibility, we
introduced a survival parameter X. If a cell was susceptible and killed,
which is visualized as the termination of the lineage in the tree, we
assigned X =0 to the cell. If a cell survived antibiotic exposure and
completed the replication (i.e., unsusceptible), X = 1 was assigned to
the cell. In our genealogical trees, this event is visualized as the split of
a lineage.

Cell survival is correlated between kin
We then quantified how the survival parameter X is correlated between
cell pairs with varying degrees of relationship. Conventionally, the
degree of relationship refers to the number of generational connec-
tions between two individuals. However, this conventional notation is
ambiguous. For example, first cousins, great aunts, and great-nieces all
have the degree of four. To uniquely define the relationship, we
developed another notation (Fig. 2a). The first number in the square
bracket is the number of generations to go up to the common ances-
tor, and the second is the number to go down to get to the related cell.
For example, a first cousin, great aunt, and great niece are denoted by
[2, 2], [3,1], and [1,3], respectively. The sum of these two numbers
equals the conventional degree of connection.

We then performed a pairwise Pearson correlation of X for each
relationship. The correlation coefficient would be zero if the fates of
two cells were independent of each other. However, we found positive
correlations (Fig. 2b), which means that if a cell survives, the other cell
is more likely to survive. The correlation was the highest between
sibling cells and decreased for more distant relationships (Fig. 2b).

We wondered how the survival pattern changes when a key factor
for resistance is inactivated. Effluxpumps extrude antibioticmolecules
out of cells31. Notably, the TolC-Acr efflux complex has broad substrate
specificity, contributing to multidrug resistance34. We inactivated this
pump in E. coli by knocking out tolC. This strain was no longer able to
grow at the cefsulodin breakpoint (Fig. 1a), which underscores the
importance of this efflux. We therefore lowered the cefsulodin con-
centration to 13 μg/ml such that the ratio of growing and dying cells in
the ΔtolC strain matches that in WT: the mean survival
<X > ΔtolC =0.64 ±0.04, which is comparable to <X >WT=0.66 ±0.01.
Pairwise Pearson correlation analysis again shows positive correlations
of survival in theΔtolC strain (Fig. 2c). The decrease of the correlations
at distant relationships wasmore gradual in theΔtolC strain than in the
WT strain (Fig. 2b, c).

We next examined the genealogical tree vertically. Applying
Pearson correlation analysis along the lineages is not informative
because, for a cell to be present, its direct ancestors (e.g., mother or
grandmother) would always have survived antibiotic treatment.
Instead, we analyzed how cell survival changes over time as a tree
branches out. Due to the binary fission of bacterial cell division, a cell
always has anoldpole and a newly formedpole. Upondivision, one cell
inherits the old pole, carrying on the lineage, while the other receives
the newpole.We calculated the cell age by the number of generations,
Z, through which the older pole had been passed down. Previous work
offered contradictory predictions about the effects of cell age on fit-
ness. Some studies indicate a decline in fitness with pole age35,36, while
others highlight a preferential accumulation of TolC in older poles,
which enhances the fitness of aged cells9. We analyzed cell survival
according to their age, <X > Z. We found that <X > Z increased with an
increasing Z for both WT and ΔtolC strains (Fig. 2d). The plot also
shows that this increase is comparable between ΔtolC and WT. This
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increase in the ΔtolC strain suggests that there are additional resis-
tance factors beyond TolC that accumulate to enhance cell survival.

Inheritance of robust survival
The observed correlation and age-dependence of cell survival suggest
the phenotypic inheritance of antibiotic resistance. To further validate
this, we next analyzed the various configurations of cell survival pat-
terns along the lineages. Specifically, in our analysis, survival refers to a
cell that completes its division and produces two daughter cells.
However, if only one or no daughter cell survives antibiotic treatment,
the mother cell’s survival does not contribute to overall population
growth. We therefore categorized the survival of a mother cell as
robust only if both of its daughter cells survived. We identified the
robust mother cells in our dataset and marked them as ‘R’. We addi-
tionally denoted the number of generations considered in the analysis
by N. In this case, since we consider the robustness of one generation
(only mother cells, without considering grandmothers or great
grandmothers yet), N is equal to 1; see Supplementary Fig. 2a (and its
caption) for graphic illustration. We then determined the frequency of
robust mother cells, F(RN=1); see Supplementary Fig. 2e table. We
compared it to the frequency expected by random chance, F0(RN=1),
which we calculated based on the probability for two daughter cell
survival being <X > 2; see Supplementary Fig. 2e table. We plotted their
fold difference, i.e., F(RN=1)/F0(RN=1), in Fig. 3a, which shows that it is
slightly greater than 1.

To examine the heritability of robust survival, we next assessed
how likely a daughter cell is robust when its mother cell is robust. For
this daughter cell to be robust, both of its own daughter cells must
survive the antibiotic treatment. Defining the number of this second
generation of daughter cells that survive antibiotic treatment as D, we
quantified the conditional probability, P (D = 2 | RN=1), i.e., the prob-
ability of two daughter cell survival (D = 2) conditioned upon one prior
generation of robustness (RN=1). See Supplementary Fig. 2b for a gra-
phical illustrationofP (D = 2 | RN=1). As shown in Fig. 3b, this conditional
probability was marginally higher than the non-conditional prob-
ability, P (D = 2), which is denoted by a dashed line in Fig. 3b.

Enrichment of robust lineages
Heritability becameevidentwhenwe consideredmultiple generations.
We first predicted that the positive effect of robust mothers on
daughter cells would elevate the frequency of two consecutive gen-
erations exhibiting robustness, denoted as F(RN=2). Indeed, this fre-
quency was much higher than the frequency expected by random
chance, F0(RN=2), with a fold difference greater than that observed for
one generation of robustness (Fig. 3a). We also found that the
daughter cells originating from the two robust generations are more
likely to be robust than daughter cells from one robust generation
(Fig. 3b). This trend continued for three consecutive generations of
robustness (N = 3), which were even more over-represented than
expected by random chance, with a fold difference greater than that
observed for two robust generations (Fig. 3a). Moreover, daughter
cells originating from three robust generations exhibited an even
higher likelihood of robust survival compared to those from two
generations (Fig. 3b). These data indicate positive feedback on robust
lineages, where robust lineages become progressively more likely to
produce robust offspring, thereby increasing their representation in
the population.

We additionally found that once cells ride the tide to produce
robust lineages, these lineages are less likely to go extinct. This effect
was uncoveredwhenwe analyzed how likely a robust cell gives birth to
non-robust daughter cells. Here, being non-robustmeans either one of
their daughter cells (i.e., daughter’s daughter cells) die, D = 1 (Supple-
mentary Fig. 3, right panel), or both dies D =0 (Fig. 3c), with the latter
indicating the termination of the lineage branch; see Supplementary
Fig. 2c, d for graphic illustration.We observed a decreasing probability
of termination with each additional generation of robustness (Fig. 3c).
This highlights a trend where robust lineages aremore likely to persist
and propagate.

We made contrasting observations when we investigated the fate
of non-robust lineages, particularly the extreme case where there is
only a single surviving branch, and all other cells die in the lineage,
denoted by ~ RN (Supplementary Fig. 4a diagram). We observed that
these non-robust lineages are much less likely to produce robust
daughter cells than robust lineages (Supplementary Fig. 4a). This is
supported by a statistical test which shows that P (D = 2 | ~ RN) is sig-
nificantly lower than P (D = 2 | RN); See Supplementary Fig. 4 caption.
Instead, these daughter cells are much more likely to die (Supple-
mentary Fig. 5a). This is supported by a statistical test, which shows
that P (D = 0 | ~ RN) is significantly higher than P (D =0 | RN); See Sup-
plementary Fig. 5 caption. Therefore, the lineages that failed to exhibit
robustness were more likely to terminate.

The lineages we analyzed above represent two extreme patterns
of ancestral history (either all cells survive or die). In the population,
however, there are other possible combinations of ancestral survival
(e.g., an aunt survives but one cousin dies, etc.). Here, we sought to
analyze how daughter cells originating from different ancestral com-
binations survive differently to gain insight into the inheritance of
resistance across the population. Because we recorded the fate of
every cell in our dataset, we can explore this relationship for each
combination of ancestral history. However, the diversity of these
combinations is vast; for instance, within just three generations of an
ancestral lineage, up to eighty different combinations of cell fate are
possible. To manage this complexity and extract meaningful insights
about inheritance, we turned to information theory. Briefly, we used
Shannon entropy to quantify the uncertainty37., i.e., missing informa-
tion in predicting the fates of two daughter cells,
H Dð Þ= �P

D=0, 1, 2pDlnpD, where pD refers to the probability that D
daughter cells survived. In addition, we can determine these prob-
abilities conditioned upon the fates of ancestors, whose pattern we
denote by Y. For example, we can determine the probability of
daughter cells surviving or dying given the fate of their aunts (Y), i.e.,
when an aunt was alive (yaunt = 1) or dead (yaunt = 0). The reduction in
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Fig. 1 | Growth of E. coli exposed to cefsulodin. a Images of wild type and ΔtolC
cultures after 24 h of incubation with different concentrations of cefsulodin. See
Supplementary Fig. 1 for growth curves. The experiment was repeated three times,
and similar images were obtained. b Representative growth of wild-type cells
exposed to the breakpoint concentration of cefsulodin. We inoculated multiple E.
coli colonies on solid media containing the breakpoint concentration of cefsulodin
and counted the number of live cells in ~ 30 colonies. The number of live cells from
4colonies over time is shownhereas anexample. Different colors indicate different
colonies. Two additional biological replicates were performed, and similar popu-
lation fluctuations were observed.

Article https://doi.org/10.1038/s41467-025-59807-x

Nature Communications |         (2025) 16:4655 3

www.nature.com/naturecommunications


the entropy with the knowledge of ancestral survival, H Dð Þ � H DjYð Þ,
widely known as mutual information38, reveals howmuch information
ancestral survival history provides to the fates of daughter cells. This
analysis showed that, in WT, the information content is low and
remains constant across multiple generations (Fig. 3d and its caption),
meaning that at the population level, the survival of daughter cells is
minimally influenced by their lineage history. This finding appears to
contrast with the pronounced lineage-dependent dynamics of
robustness we identified earlier, where robust lineages exhibited a
clear pattern of inherited resistance. This contrast indicates that the
resistance inheritance that confers advantages to robust lineages is
unique to these lineages and does not uniformly apply across the
entire population.

When we repeated this analysis for the ΔtolC strain, we saw a
different trend: the information content about the offspring survival
increases with ancestral history in ΔtolC (Fig. 3d). This agrees with our
above observation that pairwise correlations of cell survival lasted for
more distant relationships in the ΔtolC strain than the WT strain
(Fig. 2b, c). However, we note that this increase is similar in magnitude
to the upper bound of uncertainty theoretically calculated according
to the ref. 39 (shown as error bars in the figure). Furthermore, despite
the increase, the information content remain still very low (Fig. 3d) and
negligible at the population level.

Minimal requirement for a quantitative model
We next sought to develop a minimum model to explain key aspects of
our data. Previously, we and others described the dynamics of popula-
tions exposed to an antibiotic using a branching process26–28. This pro-
cess wasmathematically described as a two-statemodel, i.e., where a cell
can be in either an alive or a dead state, where the state of each cell is
independently determined. While this model can explain the hetero-
geneous response of cells to antibiotics, it fundamentally assumes no
correlation in these responses between cells. However, we observed the
kinship correlation (Fig. 2b, c), which is central to lineage-dependent
response to antibiotic exposure. To construct amodel that generates the
kinship correlation, we incorporated the phenomenon of robust survival
observed in our experiments into the model, introducing a phenotypi-
cally healthy state (Fig. 4a). Cells in this state give rise to daughter cells
equipped towithstand antibiotic exposure, and thus, both daughter cells
survive. Conversely, while a phenotypically vulnerable cell can still divide,
its daughter cells might succumb to antibiotic exposure, entering a dead
state. In our model, a cell maintains its state during its lifetime but can
change the state at the time of division. When a cell divides, a daughter
cell’s state is determined independently of the other. A daughter cell can
either retain the same state as her mother or transition to an adjacent
state. For example, a healthy mother cell might yield healthy daughter
cells or produce vulnerable ones due to antibiotic damage. A vulnerable
mother cell could produce healthy (recovery), vulnerable, or dead (kil-
led) daughter cells. See Fig. 4a and its caption for details.

To test whether this process can quantitatively explain the
observed cell fate correlation, we constructed a population model.
Typical pharmacodynamic models track the number of live cells
without considering their phenotypic states40–43. In our model, we
distinguished live cells into healthy and vulnerable states as discussed
above.Wedescribed this phenotypic heterogeneity using a population
projection matrix (Eq. 11 in Supplementary Text 2). One challenge in
applying thismatrix to agenealogical treewas thatdeadcells no longer
produce offspring, which convolutes the tree structure. We therefore
introduced a dummy state as a placeholder in the matrix to maintain
the tree structure. Applying this modified population projection

Fig. 2 | Cell survival is correlated. a Labeling scheme of relationship. The first
number in the square bracket is the number of generations to go up to a common
ancestor, and the second is the number to go down to get to the related cell. The
sum of these two numbers is equal to the conventional degree of separation.
b, c Pearson correlation of the survival parameter, X, for wild-type (WT, red) and
ΔtolC (green) strains. The lines are from the model fit; see Fig. 4 for the model. In
WT, the correlation was the highest between sibling cells and decreased for distant
relationships. The decrease was more gradual in the ΔtolC strain. Three biological
repeats were conducted. Small open circles indicate data from each replicate. The
horizontal bars indicate their weighted means. The number of cells with known
fates (used to calculate the correlation) differed between the replicates; the three
biological replicates yielded 2529, 5737, and 4246 cells with known fates for WT,
and 2535, 2261, and 10070 cells for ΔtolC. The brackets indicate the relationship
with equal degrees of connection. To statistically assess whether the obtained
correlation coefficients are significantly greater than zero (i.e., no correlation), we
performed linear regression analyses on the survival parameters (X) between
related cells and calculated corresponding p-values; see Supplementary Text 3.1.
d We sorted cells according to cell age, Z, and calculated the survival <X > Z for
different ages. The population-mean survival <X> was subtracted: <X > = 0.66 for
WT and 0.64 for ΔtolC. Small open circles indicate <X > Z − < X> for each biological
replicate. Solid red circles or green squares indicate the mean of these replicates
(for WT and ΔtolC, respectively). To calculate the error bar, we compared the
standard deviation of data from three biological replicates and the standard error
for a binomial distributionwith the number of cell pairs used andplottedwhichever
was larger. The plot shows that <X > Z − < X> increases with increasing Z. The slope
of this increase was found to be 0.0168 ± 0.0035 for WT, and 0.0118 ± 0.0033 for
the ΔtolC strain. See Supplementary Text 3.2 for statistical analysis.
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matrix into the genealogical tree (Eq. 16), we can calculate the prob-
ability distribution of phenotypic states in the offspring originated
from healthy or vulnerable cells (Eq. 21-22), thereby predicting how
different phenotypes propagate along lineages. In our case, we were
specifically interested in understanding the kinship correlation of cell
survival. We therefore applied this matrix to pairs of cells to calculate
the probabilities for different combinations of their fates, e.g., both
survive, one survives, or neither survive (Eq. 23-30). We then used

theseprobabilities to determine the Pearson correlation coefficients of
cell survival for various degrees of relationship (Eq. 39). The predicted
values are plotted as a line in Fig. 2b, c, which quantitatively matches
the experimentally observed coefficients (columns in Fig. 2b, c).
Importantly, the fit of the model to the data identifies the rates of
transition between different states (Fig. 4b). It is plausible that cells’
response could be modeled better with more than three states, which
we plan to test in our future studies. However, ourmodel convincingly
demonstrates that a three-statemodel is sufficient to explain thebroad
correlation pattern that we observed.

We next compared the rates of transition between WT and ΔtolC
strains. WT exhibited a higher damage rate than the ΔtolC strain
(Fig. 4b), although this difference was not large enough to be statisti-
cally significant (Fig. 4b caption). The damages rates between these
two strains could differ due to our experimental protocol that the
cefsulodin concentration used for WT was higher than that for the
ΔtolC strain (the concentration for each strain was chosen such that
<X> is similar between them). Interestingly, WT exhibited a recovery
rate that is about one order of magnitude higher than ΔtolC (Fig. 4b),
indicating frequent forward-backward transition. Conversely, the
lower rates of transition in theΔtolC strain indicates that cellsmaintain
their phenotypic states longer. This insight agrees with higher corre-
lation of survival between distantly related cells (Fig. 2b, c) and the
higher information content in ancestral history in the ΔtolC
strain (Fig. 3d).

Discussion
Antibiotic susceptibility is typically characterized by how a population
of bacteria as a whole responds to antibiotics. Heterogeneous
responses of isogenic cells, therefore, complicates antibiotic diag-
nostic tests and treatments13,16. In particular, the survival of a small
subpopulation can lead to antibiotic treatment failure and the recur-
rence of infections. Our work elucidates how phenotypic resistance
contributes to this phenomenon.We characterized heterogeneous cell
growth and death under antibiotic exposure. We first observed that
antibiotic-exposed populations exhibit seemingly random population
fluctuations (Fig. 1), consistent with previous findings26. When we
recorded cell growth and death in genealogical trees and analyzed
their patterns probabilistically, we observed intricate trends. Cell sur-
vival was not independent but correlated among kin (Fig. 2). Robust
cells produce robust offspring, thereby enriching the robust lineages
(Fig. 3). This robustness can be inherited from generation to

Fig. 3 | The propagation of lineage-dependent survival. In our analysis, survival
refers to a cell which completes its division and produces two daughter cells (D).
Both of these daughter cells might be killed by antibiotic treatment before their
own division (D =0), one daughter cell might survive (D = 1), or both might survive
(D = 2). The latter is categorized as robust survival. a We identified the robust
mother cells in our dataset, determined their frequency, F(RN=1), and compared it
with what would be expected by random chance, F0(RN=1). Their fold difference
(i.e., ratio, WT and ΔtolC in red and green, respectively) is plotted here. See Sup-
plementary Fig. 2 Table for raw data. We then determined the frequency for two
consecutive generations of robustness F(RN=2), i.e., robust grandmother, mother,
and aunt. The frequency for three consecutive generations of robustness F(RN=3)
was determined in a similar manner. Three biological repeats were conducted.
Small open circles indicate data from each replicate. Horizontal bars indicate their
weighted means. Error bars indicate their standard errors. b We calculated the
conditional probability, i.e., probability that daughter cells are robust given (i) their
mother cell was robust RN=1, (ii) two generations of robustness RN=2, and (iii) three
generations of robustness, RN=3: P (D = 2 | RN). The dash line refers to the non-
conditionalprobability that twodaughter cells survived by chanceP (D = 2) = < X > 2.
c Conditional probability that both daughter cells die (D =0) given different gen-
erations of robustness. d Information stored in ancestral survival history. The error
bar represents the upper bound of uncertainty theoretically calculated according
to the ref. 39. See Supplementary Text 3 for statistical analyses.
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generation (Fig. 3). Information theory indicates that this inheritance is
unique to the robust lineages and is obscured in the population-level
analysis (Fig. 3d), highlighting a challenge in studying this phenom-
enonusing apopulation-averaging approach. Collectively, ourfindings
demonstrate intricate dynamics of phenotypic resistance propagating
selectively in a minority population, offering novel insights into non-
genetic mechanisms underlying antibiotic resistance. Importantly, we
observed this phenomenon in K-12 E. coli, a strain not evolved in the
clinical setting, which suggests that this is an innate characteristic of
bacteria.

To analyze howphenotypic resistance spreads in a population, we
developed a population model that incorporates single-cell-level het-
erogeneity within a genealogical structure (Fig. 4). This model quan-
titatively captures lineage-based dynamics of phenotypic propagation.
Typical pharmacodynamic models assume that cells respond uni-
formly to antibiotics, predicting the number of live cells in a popula-
tion. In contrast, our model demonstrates how cellular heterogeneity
and its inheritance alter population dynamics during antibiotic treat-
ment, providing a new framework for understanding pharmacody-
namics. Furthermore, this modeling approach holds significant
potential for the field of population ecology, particularly in contexts
where phenotypic diversification and inheritance play a critical role.

Application of our model to different cell survival patterns
betweenWT and ΔtolC provides new population-level insights into the
molecular details of the major efflux pump. TolC, forming a complex
with Acr, extrudes antibiotic molecules, keeping the intracellular
antibiotic concentration low31. Interestingly, recent studies found that
the cell-to-cell heterogeneity in TolC expression, as well as of Acr

expression, results in heterogeneous response of cells to
antibiotics8,44–46. Our model suggests that these molecular properties
are manifest at the population level as a high rate of recovery from
antibiotic damage in WT. It would be interesting to further investigate
how their expression patterns alter the propagation of phenotypic
resistance. In particular, the designs of efflux gene promoters can be
altered to increase or decrease the heterogeneity in the expression of
efflux pumps47. Future studies couldbenefit fromusing such promoter
designs.

We believe our findings are particularly timely, aligning with the
growing interests in advancing single-cell-level antibiotic susceptibility
diagnosis. The past few years have witnessed a significant rise in
cutting-edge approaches, which leverage microfluidics and micro-
droplets in combination with optical, electrochemical, or isothermal
techniques to measure the mass, size, and morphology of single cells
exposed to antibiotics48–51. These new developments will greatly facil-
itate the thorough quantitative analyses demonstrated here. In paral-
lel, our findings can guide the refinement and application of these
techniques to fulfill their potential. For example, measuring bacterial
responses to antibiotics over multiple generations is critical to evalu-
ate phenotypic resistance. The dynamics of cell growth and death can
be analyzed quantitatively to deduce the rates of transition into and
out of the distinct phenotypic states (Fig. 4). Such detailed knowledge
will provide a more complete view of population dynamics under
antibiotic exposure, whichwill improve antibiotic treatments. Another
exciting development in the field is single-cell omic techniques, which
are rapidly improving to decrease the number of bacterial cells needed
to make transcriptomic and proteomic measurements52,53. Focusing
these techniques on the robust lineages can reveal the differential
molecular profiles that underlie the inheritance of phenotypic
resistance.

Methods
Experimental procedure
Bacterial strains andgrowth conditions. E. coliK-12NCM372254–56 and
its ΔtolC derivative (NMK320)57 were grown in LB broth (Miller) sup-
plemented with 10mM glucose and 1mM MgSO4. Briefly, a single
colony was inoculated into media in borosilicate glass culture tubes
and incubated at 37 °C with shaking (250 rpm) in a water bath shaker
overnight. The next morning, the culture was diluted with freshmedia
to an optical density (OD600) of ~0.001 and incubated in a water bath
shaker at 37 °C with shaking.

Time lapse imaging of bacterial growth. Time lapse microscopy was
performed as previously described58,59. When the culture reached
OD600 > 0.05, cells were placed on a 35mm glass-bottom petri dish
(Cellvis) and covered with a 1.5% agarose pad containing LB, 10mM
glucose, 1mM MgSO4, and cefsulodin. Cells were imaged every 5min
using an inverted fluorescencemicroscope (Olympus IX83) with an oil
immersion phase-contrast 60 × objective seated inside an incubator
chamber (InVivo Scientific) pre-warmed to 37 °C. The microscope was
controlled with MetaMorph software (Molecular Devices).

Wild-type cells were grown with a cefsulodin concentration
32μg/mL and the ΔtolC mutant with 13μg/mL. A total of 91 WT colo-
nies (37 living and 54 extinct) and 112 ΔtolC colonies (38 living and
74 extinct) were analyzed. In these colonies we had a total of 12,512
WT cells and 14,866 ΔtolC cells.

Image analysis
Cell tracking. Cell division and location of cells were tracked using a
TrackMate v7.10.2, a plug-in of Fiji, ImageJ60 Cefsulodin induces a
variety of cell shapes61. Instead of segmenting the cells, we simply
tracked the birth and location of cell poles at each time frame. Marked
cell poles of the samecell indifferent frameswere linked, andoldpoles
of newborncellswere linked to their parents, so thatgenealogical trees

Fig. 4 | A minimal model to explain the survival correlation and inheritance.
a We developed a three-state population model that includes a phenotypically
healthy state. In ourmodel, a cell maintains its state but can change the state at the
time of division. Daughter cells can either retain the same state as her mother or
transition to an adjacent state independently. For example, healthy mother cells
might yield healthy daughter cells or produce vulnerable ones due to antibiotic
damage. A vulnerable mother cell could produce healthy (recovery), vulnerable, or
dead (killed) daughter cells. bWe fit the data (lines in Fig. 2b, c) with this model to
determine the transition rates (WT and ΔtolC in red and green, respectively). Small
open circles show the rates determined for three independent experiments. The
columns and error bar indicate the means and standard deviation from the inde-
pendent experiments. A two-tailed heteroscedastic t test on the rates obtained
from three biological replicates between WT and ΔtolC shows the p-value = 0.18,
0.31, and 0.01 for the damage, kill, and recovery rates, respectively, indicating
statistical significance for the recovery rate.
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could be constructed. We marked the moment of death when cells
were visibly lysed. In many cases, growth arrest preceded lysis.
Approximately one to five percent of growth-arrested cells exhibited
growth arrest for a few frames (~ 1 h) and then resumed their growth.
We distinguished these different fates of growth-arrested cells by
moving forward or backward in time while reviewing the videos. We
made sure thatwe onlymarked cells as ‘dead’when lysiswas observed.
Cells were tracked until either a whole population went extinct or the
field became so crowded that individual cells could not be reliably
distinguished.

A cell always has old and new poles. The age of the old pole was
used to define the age of the cell35,62. Because we do not know the pole
age of the initial inoculum, the first cells were not included in our
analysis. We then assigned a unique identification to each cell repre-
senting the age of the cell pole, generation, and kinship by following a
bookkeeping protocol similar to the one used in the ref. 35. The detail
of this protocol is described in Supplementary Fig. 6.

Statistical analyses. The Pearson correlation coefficient for two
datasets is a number between − 1 and + 1 that measures the correlation
between them. For a dataset of size N in which each datapoint is
represented by two variables, x and y, the correlation coefficient is
given by

C =
PN

i= 1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðyi � �yÞ2

q : ð1Þ

In order to account for potential experimental bias that
might produce correlation, we determined the ‘background cor-
relation’; it is reported in the ‘C_B’ column in Source Data 1.
Background cells were born in the same colony as the primary
cells, in either the same or an adjacent frame, but separated by
seven or more degrees of kinship. We found that the correlation
coefficients between the primary cells and the background cells,
CB, were very close to zero. For example, CB was found to be
0.004, 0.013, and 0.0001 for three replicate plates in the WT
sibling correlation. When we performed a two-sided t test to see
whether they are significantly different from zero, the p-value was
0.27. For aunt correlation, the CB were 0.0354, 0.006, and 0.0156.
The p-value from a two-sided t test shows the p-value of 0.16. We
consistently observed such high p-values, indicating no sig-
nificant experimental bias. For extra caution, we subtracted the
background correlation from the above calculated correlation C
as follows,

Cnet =
C � CB

1� CB
: ð2Þ

The subtracted values are plotted in Fig. 2b, c.

Three-state population model. Details of the model construction
were provided with equations in Supplementary Text 2.

Shannon entropy calculation. Shannon entropy37 is defined as
H Dð Þ � �PD= 2

D=0pDlnpD, where pD refers to the probability that D
daughter cells survived antibiotic treatment (D =0, 1, or 2). Becausewe
know the fates of every cell, we can calculate pD and hence Shannon
entropy. We then calculated Shannon entropy conditioned upon the
fates of cells in the prior generation. Denoting the cell fate in the prior
generation by Y, we have H DjYð Þ � P

pyHðDjY = yÞ. Here, the sum-
mation runs for all different fates of Y. See Supplementary Fig. 7 and
the caption for detail explanation of calculating conditional Shannon
entropy. The difference between the original and conditional Shannon
entropy is equal to mutual information, which is plotted in Fig. 3d. We

corrected the potential bias due to small sample size by using Miller-
Madow correction63.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for figures are provided in the Source Data file. Raw data
used to generate these source data are provided in https://doi.org/10.
6084/m9.figshare.28877642.v1 Source data are provided in this paper.

Code availability
Our custom-built software is provided in https://doi.org/10.6084/m9.
figshare.28877669.v1.
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