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Abstract 14 

Research on bacterial resistance to antibiotics has traditionally focused on genetic changes. Yet, 15 

even within a population of genetically identical cells, responses to antibiotic exposure are 16 

strikingly heterogeneous − some cells succumb while others grow. Here, we investigated the 17 

inter-generational propagation of this heterogeneity to understand how bacteria phenotypically 18 

adapt to antibiotics. We exposed Escherichia coli to the antibiotic breakpoint − the critical 19 

concentration used to assess resistance − and tracked cell growth and death at single-cell 20 
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resolution in real time. Statistical analysis of the cell survival patterns in the genealogical trees 21 

challenged the prevailing notion that the heterogenous response to antibiotics is merely the result 22 

of stochastic noise, revealing instead that cell survival depended strongly on the family 23 

relationship and age. This dependence led to the enrichment of robust lineages through selective 24 

inheritance of resistance factors in an otherwise susceptible population. Mathematical modeling 25 

underscores a phenotypically resistant state as a critical ingredient to explain our observation. 26 

TolC-mediated efflux, a major factor in multidrug resistance, influences the rates of transition 27 

between different states, promoting non-genetic heterogeneity. Our findings establish the 28 

presence of ‘phenotypic resistance’ within a minority population and how it propagates through 29 

cell-to-cell heterogeneity. This research has profound implications for pharmacodynamic 30 

modeling, single-cell diagnostic technologies for antibiotic resistance, and the broader 31 

understanding of resistance mechanisms. 32 

Significance 33 

Bacteria can acquire antibiotic resistance through genetic alterations, a process readily identified 34 

by traditional population-level susceptibility tests. However, even genetically identical bacterial 35 

cells exhibit heterogeneous responses to antibiotics. In this study, we employed single-cell-36 

resolution imaging, statistical analysis, information theory, and quantitative modeling to 37 

characterize this heterogeneity, revealing a non-genetic mechanism of antibiotic resistance. Our 38 

findings demonstrate the selective inheritance of phenotypic traits that confer resistance. This 39 

advances our understanding of how antibiotic resistance spreads within bacterial populations 40 

non-genetically, guides the development of single-cell-level diagnostic technologies for detecting 41 

resistance, and informs the design of new treatments that account for phenotypic heterogeneity. 42 
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Introduction 45 

Antibiotics are pivotal in combating bacterial infections but lose their efficacy when 46 

administered inappropriately or misused. This problem is further exacerbated by antibiotic-47 

resistant bacteria, which continue to replicate in the presence of antibiotics.  48 

Traditionally, antibiotic resistance was attributed to genetic adaptations, such as mutations and 49 

horizontal gene transfer 1. However, wild-type (WT) bacteria without such genetic adaptations 50 

can exhibit resistance, a phenomenon known as intrinsic resistance 1. A well-documented 51 

mechanism for this form of resistance is innate efflux pumps, which extrude antibiotic molecules 52 

out of cells 2. Some of these pumps, notably TolC-Acr tripartite complex, have broad substrate 53 

specificity, resulting in the multi-drug resistance phenotype 3. Recent studies suggest that there 54 

are other molecular processes beyond the efflux that likely play significant roles in intrinsic 55 

resistance, leading to the proposal of an 'intrinsic resistome' 4. 56 

Antibiotic resistance was commonly characterized using population-averaging techniques. For 57 

example, batch-culture optical-density measurements monitor changes in population size. These 58 

methods determine the minimum inhibitory concentration (MIC) as a singular metric that 59 

assesses the antibiotic susceptibility of an entire population 5. If the MIC of a strain exceeds the 60 

breakpoint concentration of an antibiotic, the strain is categorized as antibiotic-resistant 6. The 61 

MIC is used as an input in pharmacodynamic models to predict the course of antibiotic treatment 62 

and develop treatment strategies 7-10.  63 
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Over the past decade, it has become clear that genetically-identical cells can exhibit distinct 64 

phenotypes 11,12, because molecular processes in the cell are inherently stochastic 13-15. Notably, 65 

gene expression turned out to be ‘noisy’, which leads to rapid variations in gene product levels 66 

within cells, which some studies view as a bet-hedging strategy 11,16. 67 

Similar observations were made in antibiotic treatments of isogenic populations. Despite uniform 68 

antibiotic exposure, some cells succumbed and were killed while others replicated 17-21. This 69 

phenomenon was observed broadly for a wide spectrum of antibiotics regardless of their mode of 70 

action 22, indicating it is a general principle of bacterial response to antibiotics. However, it is 71 

unclear how this cell-to-cell heterogeneity disrupts the population pharmacodynamics. Based on 72 

the understanding that stochastic gene expression underlies cell-to-cell heterogeneity, recent 73 

studies suggested that the heterogeneity introduces noise to the population dynamics 22-25. These 74 

studies used stochastic branching processes to model cell growth and death under antibiotic 75 

exposure as random chance events, predicting rapid population fluctuations. Yet, this perspective 76 

overlooks potential regulatory mechanisms that could modulate the heterogeneity to enhance 77 

population fitness under antibiotic stress. In particular, if these mechanisms persist near the 78 

antibiotic breakpoint, they can manifest as antibiotic resistance, having significant impacts on 79 

antibiotic diagnosis tests and treatment strategies 26,27.  80 

In this study, we meticulously examined the heterogeneous response of bacterial cells to 81 

antibiotic exposure. Specifically, we exposed an isogenic population of E. coli cells to a β-lactam 82 

antibiotic (cefsulodin) at its breakpoint concentration and tracked their growth and death at 83 

single-cell resolution in real time. We simultaneously traced their family relationship and 84 

documented their growth/death patterns in the genealogical trees. We then analyzed these 85 

patterns probabilistically using statistical methods, information theory, and quantitative 86 
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modeling. The results collectively reveal intricate inheritance dynamics of ‘phenotypic 87 

resistance’ through cell-to-cell heterogeneity, offering novel insights into non-genetic 88 

mechanisms underlying antibiotic resistance.  89 

 Results 90 

Single-cell-level analysis of cell growth and death 91 

Traditional diagnosis of antibiotic resistance provides an incomplete picture about antibiotic 92 

susceptibility. For example, the breakpoint of a β-lactam antibiotic, cefsulodin, is 32 µg/ml 28,29. 93 

A wild-type E. coli culture grows to the saturating density at this breakpoint, thereby being 94 

categorized as resistant 6 (Fig. 1a; see Supplementary Fig. 1 for growth curve). However, single-95 

cell-level imaging shows that a substantial number of cells are susceptible and are killed at this 96 

concentration (Supplementary Movie, left panel). Death of these cells, which occurs concurrently 97 

with growth of others, causes the number of live cells in a population to fluctuate dynamically 98 

(Fig. 1b). Such population fluctuations have been observed for various other bactericidal drugs 99 

22. 100 

In previous studies, these fluctuations were modeled using a stochastic branching process 22-24. 101 

To test the basis of this modeling, we analyzed the fluctuations in greater depth. Specifically, in 102 

addition to counting live cells, we followed the family relationship of these cells, thereby 103 

constructing a genealogical tree for each colony. This tree visualizes which cells grew and which 104 

died (Supplementary Movie, right panel), displaying the variations in antibiotic susceptibility 105 

among individual cells. An experiment encompassing ~30 colonies yielded ~30 genealogical 106 

trees, collectively comprising ~4,000 cells. The experiment was independently repeated thrice.  107 
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To statistically assess the variations in antibiotic susceptibility, we introduced a survival 108 

parameter X. If a cell was susceptible and killed, which is visualized as the termination of the 109 

lineage in the tree, we assigned X = 0 to the cell. If a cell survived antibiotic exposure and 110 

completed the replication (i.e., unsusceptible), X =1 was assigned to the cell. In our genealogical 111 

trees, this event is visualized as the split of a lineage.  112 

Cell survival is correlated between kin.  113 

We then quantified how the survival parameter X is correlated between cell pairs with varying 114 

degrees of relationship. Conventionally, the degree of relationship refers to the number of 115 

generational connections between two individuals. However, this conventional notation is 116 

ambiguous. For example, first cousins, great aunts and great nieces all have the degree of four. 117 

To uniquely define the relationship, we developed another notation (Fig. 2a). The first number in 118 

the square bracket is the number of generations to go up to the common ancestor, and the second 119 

is the number to go down to get to the related cell. For example, a first cousin, great aunt and 120 

great niece are denoted by [2, 2], [3,1], and [1,3], respectively. The sum of these two numbers 121 

equals the conventional degree of connection.  122 

We then performed pairwise Pearson correlation of X for each relationship. The correlation 123 

coefficient would be zero if their fates were random. However, our result shows positive 124 

correlations (Fig. 2b). This means that if a cell survives, the other cell is more likely to survive as 125 

well. The correlation was highest between sibling cells and decreased for more distant 126 

relationships (Fig. 2b). 127 

We wondered how the survival correlation changes when a resistance mechanism is inactivated. 128 

We inactivated a major antibiotic efflux pump by knocking out tolC. The MIC of this mutant fell 129 
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below the breakpoint of cefsulodin (Fig. 1a), which underscores the importance of this efflux 130 

pump for antibiotic resistance. Because the breakpoint concentration of cefsulodin immediately 131 

killed ∆tolC cells, we lowered the concentration to 13 µg/ml such that the ratio of growing and 132 

dying cells in the ∆tolC strain matches that in WT: the mean survival [X]∆tolC = 0.64 ±0.04, 133 

which is comparable to [X]WT = 0.66 ± 0.01. Pairwise Pearson correlation analysis again shows 134 

positive correlations of survival in the ∆tolC strain (Fig. 2c), though the correlation decrease at 135 

more distant relationships was more gradual in the ΔtolC strain than in the WT strain (Fig. 2b,c). 136 

This difference between WT and ΔtolC strains will be explored below. 137 

Having analyzed the genealogical tree horizontally above, we next examined the tree vertically.  138 

Applying Pearson correlation analysis vertically along the tree is not informative because, for a 139 

cell to be present, its direct ancestors (e.g., mother or grandmother) would always have survived 140 

antibiotic treatment. Instead, we analyzed how the mean survival [X] changes over time as a tree 141 

branches out. Due to the binary fission of bacterial cell division, a cell always has an old pole 142 

and a newly-formed pole. Upon division, one cell inherits the old pole, carrying on the lineage, 143 

while the other receives the new pole. We determined the cell age by the number of generations 144 

through which the older pole had been passed down. Previous work offered contradictory 145 

predictions about the effects of cell age on fitness. Some studies indicate a decline in fitness with 146 

pole age 30,31, while others highlight a preferential accumulation of TolC in older poles, which 147 

enhances the fitness of aged cells 32.  We found that [X] steadily increased with an increasing cell 148 

age for both WT and ∆tolC strains (Fig. 2d). Although the ∆tolC exhibited a slightly weaker age 149 

dependency than WT (the slope in Fig. 2d being 0.0118 ± 0.0033, compared to 0.0168 ± 0.0035 150 

for WT), the difference barely exceeded one standard deviation. This increase in the ∆tolC strain 151 
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suggests that there are additional resistance factors beyond TolC that accumulate to enhance cell 152 

survival.  153 

Inheritance of robust survival  154 

The observed correlation and age-dependence of cell survival suggests the phenotypic 155 

inheritance of antibiotic resistance. To further validate this, we characterized cell survival along 156 

the lineages. In our analysis, survival refers to a cell that completes its division and produces two 157 

daughter cells (D). However, if only one daughter cell survives antibiotic treatment (D = 1) or 158 

none survive (D = 0), the mother cell’s survival does not contribute to overall population growth. 159 

Here, we categorized survival of a cell as robust if both of its daughter cells survived (D = 2). 160 

When we identified the robust mother cells in our dataset and determined their frequency, 161 

F(RN=1), we found that these robust cells were present more frequently than expected by random 162 

chance, F0(RN=1); see Supplementary Fig. 2. The relative frequency, i.e., the ratio of F(RN=1) and 163 

F0(RN=1), was plotted in Fig. 3a. Here, N=1 refers to the fact that only one generation was 164 

considered.  165 

To examine the heritability of robust survival, we next assessed how likely daughter cells are 166 

robust when their mother cell is robust. This was quantified by the conditional probability, P (D 167 

= 2 | RN=1), i.e., the probability of two daughter cell survival (D = 2) conditioned upon one 168 

generation of robustness (RN=1). As shown in Fig. 3b (left column), this conditional probability 169 

was higher than the non-conditional probability: P (D = 2) denoted by a dash line in Fig. 3b. This 170 

observation suggests that robust survival is heritable from generation to generation. 171 

Enrichment of robust lineages 172 
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This heritability was more pronounced when we considered multiple generations. We first 173 

predicted that the positive effect of robust mothers on daughter cells would elevate the frequency 174 

of two consecutive generations exhibiting robustness, denoted as F(RN=2). Indeed, this frequency 175 

was much higher than the frequency expected by random chance, F0(RN=2), with a fold difference 176 

greater than that observed for one generation of robustness (Fig. 3a and Supplementary Fig. 2). 177 

We also found that the daughter cells originating from the two robust generations are more likely 178 

to be robust than daughter cells from one robust generation; P(D = 2| RN=2) > P(D = 2| RN=1), as 179 

shown in Fig. 3b. This trend continued for three consecutive generations of robustness (N = 3), 180 

which were even more over-represented than expected by random chance, with a fold change 181 

greater than that observed for two robust generations (Fig. 3a). Moreover, daughter cells 182 

originating from three robust generations exhibited an even higher likelihood of robust survival 183 

compared to those from two generations. (Fig. 3b). These data indicate positive feedback on 184 

robust lineages, where robust lineages become progressively more likely to produce robust 185 

offspring, thereby increasing their representation in the population.  186 

We additionally found that once cells ‘ride the tide’ to produce robust lineages, these lineages are 187 

less likely to go extinct. This effect was uncovered when we analyzed how likely a robust cell 188 

give birth to non-robust cells. Here, being non-robust means either one of their daughter cells 189 

die, D = 1 (Supplementary Fig. 3, right panel) or both dies D = 0 (Fig. 3c), with the latter 190 

indicating the termination of the lineage branch. We observed a decreasing probability of the 191 

termination with each additional generation of robustness (Fig. 3c). This highlights a trend where 192 

robust lineages are more likely to persist and propagate. 193 

We made contrasting observations when we investigated the fate of non-robust lineages, 194 

particularly the extreme case where there is only a single surviving line, and all other cells die in 195 
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the lineage (Supplementary Fig. 4a diagram). We found that these non-robust lineages are much 196 

less likely to produce robust daughter cells (Supplementary Fig. 4a). Instead, these daughter cells 197 

are much more likely to die (Supplementary Fig. 5a), meaning the lineages that failed to exhibit 198 

robustness were more likely to terminate. 199 

There are two potential mechanisms for the observed propagation of robust lineages: (i) 200 

accumulation of resistance factors or (ii) decrement of antibiotic-induced cellular damage. Either 201 

of these mechanisms can explain the observed increase in the conditional probability of robust 202 

daughter cells with an increasing number of robust generations. We therefore analyzed how an 203 

increasing number of non-robust generations affects the conditional probabilities of daughter cell 204 

survival (D = 2, D = 1, and D = 0). Surprisingly, we found that these probabilities changed little 205 

with the number of non-robust generations, showing a plateau (Supplementary Fig. 3-5). This 206 

plateau indicates that cellular damage by antibiotics is constant, supporting the accumulation of 207 

resistant factors.   208 

The lineages we analyzed above represent two extreme patterns of ancestral history (either all 209 

cells survive or die). In the population, however, there are other possible combinations of 210 

ancestral survival (e.g., an aunt survives but one cousin dies, etc.). Here, we sought to analyze 211 

how daughter cells originating from different ancestral combinations survive differently to gain 212 

insight into the inheritance of resistance across the population. Because we recorded the fate of 213 

every cell in our dataset, we can explore this relationship for each combination of ancestral 214 

history. However, the diversity of these combinations is vast; for instance, within just three 215 

generations of an ancestral lineage, up to eighty different combinations of cell fate are possible. 216 

To manage this complexity and extract meaningful insights about the inheritance, we turned to 217 

information theory. Briefly, we used Shannon entropy to quantify the uncertainty, i.e., missing 218 



11 
 

information in predicting the fates of two daughter cells, 𝐻𝐻(𝑀𝑀). We then determined how this 219 

uncertainty changes when incorporating the knowledge of ancestral survival YN. The reduction in 220 

the entropy,  𝐻𝐻(𝑀𝑀) −  𝐻𝐻(𝑀𝑀|𝑌𝑌𝑁𝑁), widely known as mutual information 33, reveals how much 221 

information ancestral survival history provides to the fates of daughter cells. This analysis 222 

showed that, in WT, the information content remains relatively constant across multiple 223 

generations (Fig. 3d), meaning that at the population level, the survival of daughter cells is 224 

minimally influenced by their lineage history. This finding appears to contrast with the 225 

pronounced lineage-dependent dynamics of robustness we identified earlier, where robust 226 

lineages exhibited a clear pattern of inherited resistance. This contrast indicates that the 227 

resistance inheritance that confers advantages to robust lineages is unique to these lineages and 228 

does not uniformly apply across the entire population.  229 

Minimal requirement for a quantitative model.  230 

We next sought to develop a minimum model to explain key aspects of our data. Previously, we 231 

and others tested a two-state Markov chain model where a cell survives or dies randomly during 232 

antibiotic exposure 22-24.  While this model can explain heterogeneous response of cells to 233 

antibiotics, it fundamentally assumes no correlation in these responses between cells. However, 234 

we observed the kinship correlation (Fig. 2b,c). Importantly, this correlation is central to lineage-235 

dependent response to antibiotic exposure. To construct a model that generates the kinship 236 

correlation, we incorporated the phenomenon of robust survival observed in our experiments into 237 

the model, introducing a ‘phenotypically healthy’ state (Fig. 4a). Cells in this state give rise to 238 

daughter cells equipped to withstand antibiotic exposure, and thus both daughter cells survive. 239 

Conversely, while a phenotypically “vulnerable’ cell can still divide, its daughter cells might 240 

succumb to antibiotic exposure, entering a ‘dead’ state. In our model, daughter cells can either 241 
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preserve the same state as their mothers or shift to an adjacent state. For example, healthy mother 242 

cells might yield healthy daughter cells or produce vulnerable ones due to antibiotic damage. A 243 

vulnerable mother cell could produce either vulnerable or dead daughter cells, or it could recover 244 

from the damage, giving birth to healthy daughter cells. This three-state Markov chain is 245 

summarized in Fig. 4a. 246 

The major difference of this model from the two-state model is that it predicts the cell fate 247 

correlation. Specifically, the healthy mother cells produce two surviving daughter cells, resulting 248 

in sibling correlation. If these daughter cells have a higher-than-average probability of sharing 249 

the mother’s healthy state, then the correlation will occur at more distant relationships. This 250 

long-lasting correlation will manifest as the propagation of robust survival. The numerical 251 

simulation shows that this model quantitatively explains the observed pattern of survival 252 

correlation (Fig. 2bc, line). The fit of the model reveals the rate of transition between different 253 

states (Fig. 4b). It is plausible that cells’ response could be modeled better with more than three 254 

states, which we plan to test in our future studies. However, our model convincingly 255 

demonstrates that a three-state model is sufficient to explain the broad correlation pattern that we 256 

observed.    257 

We then compared the parameter values for WT and ∆tolC strains to gain molecular insights into 258 

the quantitative mechanism described above. As mentioned above, TolC contributes significantly 259 

to antibiotic resistance (Fig. 1a). We therefore had to reduce the cefsulodin concentration for the 260 

∆tolC strain so that its mean survival [X] was comparable to that of WT at the breakpoint. This 261 

explains why the killing rates are comparable between WT and ∆tolC strains (Fig. 4b). However, 262 

the recovery rate of the ∆tolC strain was one order of magnitude lower than that of WT (Fig. 4b). 263 
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To understand this difference, we considered the molecular function of TolC. It is a major 264 

component for the efflux pump, which lowers the intracellular antibiotic concentration. While 265 

WT cells experience more damage (Fig. 4b, presumably because they are exposed to a higher 266 

antibiotic concentration), they also exhibit a higher recovery rate, leading to frequent transition 267 

between states. Interestingly, recent studies found that the expression of TolC, as well as Acr 268 

which forms a complex with TolC to extrude antibiotics, is stochastic 34-37, providing a potential 269 

molecular mechanism for this frequent transition. On the other hand, because ∆tolC exhibits the 270 

lower rates of damage and recovery, cells maintain their phenotypic states longer, which will 271 

lead to higher survival correlation between distantly related cells (Fig. 2b,c). The long-lasting 272 

correlation results in stronger lineage-dependent dynamics of robustness (Fig. 3bc) and higher 273 

information content in ancestral history (Fig. 3d) in the ∆tolC compared to WT.  274 

Discussion  275 

Antibiotic susceptibility is characterized by how a population of bacteria as a whole responds to 276 

antibiotics. Heterogeneous responses of isogenic cells therefore complicates antibiotic diagnostic 277 

tests and treatments 26,27. In particular, the survival of small subpopulations can lead to antibiotic 278 

treatment failure and recurrence of infections. Here, we meticulously characterized 279 

heterogeneous cell growth and death under antibiotic exposure. We first observed that antibiotic-280 

exposed populations exhibit seemingly random population fluctuations (Fig. 1), consistent with 281 

previous findings 22. When we recorded cell growth and death in genealogical trees and analyzed 282 

their pattern probabilistically, we observed intricate trends. Cell survival was not random but 283 

correlated among kin (Fig. 2). Robust cells produce robust offspring, thereby enriching the 284 

robust lineages (Fig. 3). This robustness further strengthened across the generations, indicating 285 

phenotypic adaptation to antibiotics (Fig. 3). This positive feedback was due to the inheritance of 286 
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resistance factors whereas antibiotic-induced cellular damage remained constant. Information 287 

theory indicates that this inheritance is unique to the robust lineages and is obscured in the 288 

population-level analysis (Fig. 3d), highlighting a challenge in studying this phenomenon using a 289 

population-averaging approach. Based on the analysis of robust lineages, we developed a 290 

quantitative model that includes a phenotypically healthy state, articulating the minimum 291 

ingredient to explain our data (Fig. 4). Additional analysis of the ∆tolC strain shows that 292 

antibiotic efflux alters the rates of transition between different states, thereby amplifying cellular 293 

heterogeneity (Fig. 4). Collectively, our findings demonstrate intricate dynamics of phenotypic 294 

resistance that propagates selectively in a minority population, offering novel insights into non-295 

genetic mechanisms underlying antibiotic resistance.  296 

We believe our findings are particularly timely, aligning with the intense interests in advancing 297 

single-cell-level antibiotic susceptibility diagnosis. The past few years have witnessed a 298 

significant rise in cutting-edge approaches, which leverage microfluidics and microdroplets in 299 

combination with optical, electrochemical, or isothermal techniques to measure the mass, size, 300 

and morphology of single cells exposed to antibiotics 38-41. These new developments will greatly 301 

facilitate the thorough quantitative analyses demonstrated here. In parallel, our findings can 302 

guide the refinement and application of these techniques to fulfill their potential. For example, 303 

measuring bacterial responses to antibiotics over multiple generations is critical to evaluate 304 

phenotypic resistance. The dynamics of cell growth and death can be analyzed quantitatively to 305 

deduce the rates of transition into and out of the resistance state. Such detailed knowledge will 306 

provide a more complete view of population dynamics under antibiotic exposure, advancing our 307 

understanding of pharmacodynamics, which will improve antibiotic treatments. Another exciting 308 

development in the field is “single-cell” omic techniques, which are rapidly improving to 309 
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decrease the number of bacterial cells needed to make transcriptomic and proteomic 310 

measurements 42,43. Focusing these techniques on the robust lineages can reveal the differential 311 

molecular profiles that underlie the inheritance of phenotypic resistance.  312 

Method 313 

Experimental Procedure 314 

Bacterial strains and growth conditions. 315 

E. coli K-12 NCM3722 44-46 and its ∆tolC derivative (NMK320)47 were grown in LB broth 316 

(Miller) supplemented with 10 mM glucose and 1 mM MgSO4. Briefly, a single colony was 317 

inoculated into media in borosilicate glass culture tubes and incubated at 37°C with shaking (250 318 

rpm) in a water bath shaker overnight. Next morning, the culture was diluted with fresh media to 319 

optical density (OD600) of ~0.001 and incubated in a water bath shaker at 37°C with shaking.  320 

Time lapse imaging of bacterial growth. 321 

Time lapse microscopy was performed as previously described 48,49. When a cell culture reached 322 

OD600 > 0.05, cells were placed on a 35 mm glass bottom petri dish (Cellvis) and covered with a 323 

1.5 % agarose pad containing LB, 10 mM glucose, 1 mM MgSO4, and cefsulodin. Cells were 324 

imaged every 5 minutes using an inverted fluorescence microscope (Olympus IX83) with an oil 325 

immersion phase-contrast 60× objective seated inside an incubator chamber (InVivo Scientific) 326 

pre-warmed to 37°C. The microscope was controlled with MetaMorph software (Molecular 327 

Devices).  328 

Wild-type cells were grown with a cefsulodin concentration 31 μg/mL and the ∆tolC mutant with 329 

13 μg/mL. A total of 91 WT colonies (37 living and 54 extinct) and 112 ∆tolC colonies (38 330 
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living and 74 extinct) were analyzed. In these colonies we had a total of 12,512 WT cells and 331 

14,866 ∆tolC cells. 332 

Image analysis.  333 

Cell tracking.  334 

Cell division and location of cells were tracked using a TrackMate v7.10.2, a plug-in of Fiji, 335 

ImageJ 50 Cefsulodin induces a variety of cell shapes 51. Instead of segmenting the cells, we 336 

simply tracked the birth and location of cell poles at each time frame. Marked cell poles of the 337 

same cell in different frames were linked, and old poles of newborn cells were linked to their 338 

parents, so that genealogical trees could be constructed. We marked the moment of death when 339 

cells are visibly lysed or permanently arrested their growth. Cells were tracked until either a 340 

whole population went extinct, or the field became so crowded that individual cells could not be 341 

reliably distinguished. We then assigned a unique identification to each cell representing the age 342 

of the cell pole, generation, and kinship; see Supplementary Fig. 6 for detail.  343 

Statistical analyses  344 

The Pearson correlation coefficient for two datasets is a number between -1 and +1 that measures 345 

the correlation between them. For a dataset of size N in which each datapoint is represented by 346 

two variables, x and y, the correlation coefficient is given by 347 

𝐶𝐶 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑁𝑁
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁

𝑖𝑖=1

 348 

In order to account for potential experimental bias that might produce correlation, we determined 349 

the ‘background correlation’. Background cells were born in the same colony as the primary 350 
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cells, in either the same or an adjacent frame, but separated by seven or more degrees of kinship. 351 

We found that the correlation coefficients between the primary cells and the background cells, 352 

CB, were very close to zero, indicating no significant experimental bias. For extra caution, we 353 

subtracted the background correlation from the above calculated correlation C as follows, 354 

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 =
𝐶𝐶 − 𝐶𝐶𝐵𝐵
1 − 𝐶𝐶𝐵𝐵

. 355 

The subtracted values are plotted in Fig. 2bc.  356 

Three-state Markov model  357 

Details of the model construction were provided with equations in Supplementary Note.  358 

Shannon entropy calculation   359 

Shannon entropy is defined as 𝐻𝐻(𝑀𝑀) ≡ −∑𝑝𝑝𝑀𝑀 log2 𝑝𝑝𝑀𝑀, where M refers to different microstates 360 

for the fates of two daughter cells, i.e. both survive, elder survives, younger survives, and both 361 

die. Because we know the fates of every cell, we can calculate the probability of each microstate 362 

(𝑝𝑝𝑀𝑀) and hence Shannon entropy. We then calculated Shannon entropy conditioned upon the 363 

fates of cells in the prior generation: 𝐻𝐻(𝑀𝑀|𝑌𝑌) ≡ ∑𝑝𝑝𝑦𝑦𝐻𝐻(𝑀𝑀|𝑌𝑌 = 𝑦𝑦). For example, the Shannon 364 

entropy conditioned upon the fates of the ‘1’ generations was calculated in the following way:  365 

𝐻𝐻(𝑀𝑀|𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 𝑝𝑝(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1)𝐻𝐻(𝑀𝑀|𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1) + 𝑝𝑝(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0)𝐻𝐻(𝑀𝑀|𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0). 366 

The difference between the original and conditional Shannon entropy is equal to mutual 367 

information, which is plotted in Fig. 3d. We corrected the potential bias due to small sample size 368 

by using Miller-Madow correction 52. 369 
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Figure Caption 384 

Fig. 1. Growth of E. coli exposed to cefsulodin.   385 

a). Images of wild type and ∆tolC cultures after 24 hours of incubation with different 386 

concentrations of cefsulodin. See Supplementary Fig. 1 for growth curves. The experiment was 387 

repeated twice and similar images were obtained. b). Representative growth of wild-type cells 388 

exposed to the breakpoint concentration of cefsulodin. We inoculated multiple E. coli colonies 389 

on solid media containing the breakpoint concentration of cefsulodin and counted the number of 390 

live cells in ~30 colonies. The number of live cells from 4 colonies is shown here as an example. 391 
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Different colors indicate different colonies. Two additional biological replicates were performed, 392 

and similar population fluctuations were observed.   393 

Fig. 2. Cell survival is correlated. 394 

a) Labeling scheme of relationship. The first number in the square bracket is the number of 395 

generations to go up to a common ancestor, and the second is the number to go down to get to 396 

the related cell. The sum of these two numbers is equal to the conventional degree of separation. 397 

b and c). Pearson correlation of the survival parameter, X, for WT and ∆tolC strains. The lines 398 

are from the model fit; see Fig. 4 for the model. d) We sorted cells according to the lineage age 399 

and calculated the mean survival [X]. The slope of this increase was 0.0168 ± 0.0035 for WT 400 

cells, and 0.0118 ± 0.0033 for the ∆tolC strain. Small open circles indicate the raw data from 401 

three biological replicates. The columns and solid circles indicate their means. To calculate the 402 

error bar, we compared the standard deviation of raw data from three biological repeats and the 403 

standard error for a binomial distribution with the number of cell pairs used and plotted 404 

whichever was larger. 405 

Fig. 3. The propagation of lineage-dependent survival.  406 

In our analysis, survival refers to a cell that completes its division and produces two daughter 407 

cells (D). Both of these daughter cells might be killed by antibiotic treatment before their own 408 

division (D = 0), one daughter cell might survive (D = 1), or both might survive (D = 2). The 409 

latter is categorized as robust survival. (a). We identified the robust mother cells in our dataset, 410 

determined their frequency, F(RN=1) and compared it with what would be expected by random 411 

chance, F0(RN=1). The relative difference is plotted here. See Supplementary Fig. 2 for raw data. 412 

We then determined the frequency for two consecutive generations of robustness F(RN=2), i.e., 413 
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robust grandmother, mother, and aunt. The frequency for three consecutive generations of 414 

robustness F(RN=3) was determined in a similar manner. (b). We calculated the conditional 415 

probability, i.e., probability that daughter cells are robust given (i) their mother cell was robust 416 

RN=1, (ii) two generations of robustness RN=2, and (iii) three generations of robustness, RN=3. The 417 

dash line refers to the non-conditional probability P (D = 2) = X2. c). Conditional probability that 418 

both daughter cells die (D = 0) given different generations of robustness. d) Information stored in 419 

the ancestral survival history. Red (left) and green (right) columns indicate WT and ∆tolC 420 

strains, respectively. The columns represent the values obtained by combining data from all three 421 

independent experiments. The error bar represents the standard error calculated using the values 422 

from three biological repeats.  423 

Fig. 4. A minimal model to explain the survival correlation and inheritance.  424 

a) The previous two-state Markov model cannot explain the survival correlation. We introduced 425 

a phenotypically healthy state into this model to account for robust survival. b) We fit the data 426 

(lines in Fig. 2bc) with this model to determine the transition rates. Small open circles show the 427 

rates determined for three independent experiments. The columns and error bar indicate the 428 

means and standard deviation from the independent experiments.  429 
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